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54 MILLIO N UNITS IN  2011 
 208 MILLIO N BY 2014 

2011 EXPLO SIO N TABLET PC 
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HEALTHY LIFE STYLE  
SUPPORTED BY ELECTRONICS 
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KEEP INCREASE OF THE NUMBER OF 
COMPONENTS. 
COST PER COMPONENTS DECREASES! 
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TECHNOLOGY ROADMAP: 
STRATEGIC AGENDA 

CNT, nanowire, TFET 
Graphene 
Quantum computing 
Spintronics 
Polymer electronics 
…. 
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SCALING HAMPERED BY LEAKAGE CURRENTS 
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Sub-VT 
Leakage 

 
 
 
 
 
 

Gate 
Leakage 

 
 
 
 
 
 

 

2. Gate oxide leakage or 
Tunneling current 
– As oxide thins down, leakage increases 

exponentially 

1. Subthreshold leakage 
▸ Shorter channel lengths 

▸ Threshold voltage not scaling as fast as VDD 
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TACKLING THE POWER PROBLEM 

11 

Solution  New Material 
e.g., High-K dielectric 

Gate 
Leakage 
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TACKLING THE POWER PROBLEM 
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Solution  New Material 
e.g., High-K dielectric 

Gate 
Leakage 

 
 
 
 
 
 

Solution  New Architecture 
e.g., Fully Depleted Devices 

for better 
 Short-Channel control 

Sub-VT 
Leakage 
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• e-SiGe + 
tCESL 

• (100)/[100] + 
tCESL 

90nm 
• SMTx1 

65nm 
• SMTx2 

45nm 32nm 

• e-SiGe + 
tCESL 

• (100)/<100> + 
tCESL 

• DUAL CESL 

• e-SiGe + 
tCESL 

• e-SiGe + DUAL 
CESL 

• DUAL CESL 

• SPT 
(Stress Proximity Technique) 

• (Surface 
Engineering: 
(110)/<110> 
pMOS; 
(100)/<100> 
nMOS) 

• SMTx3 

• e-SiGe + 
tCESL 

• e-SiGe + DUAL 
CESL 

• DUAL CESL 

• SPT 
(Stress Proximity Technique) 

• Surface 
Engineering: 
(110)/<110> 
pMOS 
(100)/<100> 
nMOS 

• e-SiC 

STRESS ENGINEERING : A DRIVING FORCE 
… 
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New process modules 
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TunnelFET 

CNT’s 
Ge/IIIV 

nanowires 

graphene 

?? 
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Ge PMOS 

[1]: MIRAI IEDM 2007
[2]: CEA-LETI ESSDERC 2008

1

2
This work:
ION=478µA/µm
IOFF=37nA/µm
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Ge PMOS – INTERFACE ENGINEERING 
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Ge DEVICES  – SURFACE PASSIVATION 

Cross-sectional TEM images of a high-k gate stack on a Ge surface passivated by different thicknesses 
 of Si. At 12 MLs of silicon, the layer relaxes, giving rise to misfit dislocations at the interface. 
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CMOS WITH HIGH-MOBILITY CHANNEL 
MATERIALS 

Combination of high 
mobility III-V nMOS 
and (strained) Ge 

pMOS integrated on 
Si substrate for 
ultimate CMOS 
performance  

Ge has lightest 
hole m*  

  good for pMOS     
 
Many III-V 

materials have 
light electron m*  

  ideal for nMOS 

S. Takagi, The University of Tokyo, INC4 2008 

(In)GaAs or 
other III-V nMOS Si CMOS 

Si wafer 
Strained Ge grown on Si or 
GeOI substrate  

(In)GaAs or other 
III-V grown on Ge 

Strained Ge 
pMOS 
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Ge AS INTERMEDIATE SEMICONDUCTOR 

• A wide range of materials could be grown on a Silicon wafer with Ge as 
an intermediate material to achieve low defect-density III-V Silicon 
 Most interesting candidates: GaAs, InGaAs, InAs, ….. 
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 Demonstration of: 
 Common gate stack for IIIV & Ge based devices 
 Selective IIIV integration, directly on Silicon substrate 

 Issue left of Dit @ interface IIIV – gate stack  

HIGH-MOBILITY IIIV-BASED QW DEVICES 

pMOS nMOS 

[Imec, IEDM’09] 

InP

Si

Ge

Gate

N+ InGaAs

Cu

W Plug

InGaAs channel

STI

HK/MG 

InGaAs 
QW 

InP 
buffer 

Si 

Al2O3 

S-passivation 
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SELECTIVE EPI GROWTH OF Ge AND III/V 
AFTER STI 
 Selective growth of Ge epi after STI formation on Si wafer 

 Low defect densities obtained after proper annealing 

 Provides flat surface that allows further scaling of transistor gate length  

 Good quality selective growth of thin (In)GaAs on Ge demonstrated 
No large defects or dislocations can be observed by 

TEM 

SiO2 

Si 

n-Ge 

Si 

SiO2 
(In)GaAs (In)GaAs SiO2 
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SELECTIVE GROWTH OF Ge AND III/V ON SI 
WAFERS 

SiO2 n-Ge 

Si 

InP SiO2 

Si 

Down to  
W ~ 10-15nm 

Si 

Ox 

Si 

Ge 
SiGe 
III/V 

Si 

Ox 

T_recess = 50-60nm 

Si 

Ox 

Si passivation 
(t < 10 ML)  

Field 
recess Ge 

SiGe 
III/V 

Ox 

 Local selective growth after STI allows integration of Ge and III/V materials on 
Si wafers, also for FinFET’s. 
 confined growth to grow materials with high lattice mismatch to Si, >> tc 

Si 

InP 

Ge 
GaAs 

Ge 
InP 

Si 
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MULTI-GATE STRUCTURES 
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MATERIALS AND DEVICES 
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SRAM CELL SIZE ROADMAP 
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 2nd generation FinFET-based 22nm SRAM cell (10% smaller) 
 ...  and already gearing for 16nm! 

1st gen. 
22nm 2nd  gen. 

22nm 
IMEC 

16nm target 
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CONCEPTS FOR FULLY DEPLETED 
CHANNEL 

28 

   

Tdep 

Thin body channel (<10nm) 

S D 
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 2nd Gate (FinFET) 
Buried Oxide (UTB-SOI) 
High-bandgap + QW 
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EXPLORATORY CONCEPTS 

  

29 

Tunnel FET Graphene FET 
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DEVICES WITH REDUCED POWER CONSUMPTION 

 Improved subthreshold slope devices can have high ION/IOFF ratio at low switching voltage  
reduced supply voltage and power consumption 
 For carrier transport limited by thermionic emission over a barrier:  
 dψS/d(log10l) ≈ 60 mV/decade at room temperature 

OFF Ec 

Ev 

ON Ec 

Ev 

p            i                   n 

Band gap blocks 
tunnel current 

Band-to-band 
tunneling 

drain

gate

source

p

i

n

gate

drain

gate

source

p

i

n

gate

 TunnelFET basic idea: use the band-to-band 
tunneling as an energy filter to overcome the 
60mV/decade subthreshold slope limitation 
 
 ON/OFF switching determined by band-to-band 

tunneling at source side 
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 CHOICE TFET MATERIAL: EFFECT OF BANDGAP 

- tunneling probability ~ (E2mr
1/2.Eg

-0.5) exp(-A.Eg
1.5) 

    Eg,Si = 1.12 eV 

    Eg,Ge = 0.66 eV 

 

- I-V curves show: 

   Ids,Ge ≈ 100 Ids,Si 

 
- smaller bandgap                                                          
  improves tunneling,                                                    
  but want silicon-based                                                  
  TFET… Remark: Ge TFET-curve is shifted to the left for easier comparison 
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 COMPLEMENTARY HETERO-STRUCTURE 
TFETS 

A. Verhulst et al., IEEE Electron Dev. Lett., 29, 1398 (2008) 
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VDD ~ 0.25V (“Green” Transistor) 
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TFET Implementations 
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Mayer et al., IEDM (2008) 

Bhuwulka et al., IEEE TED(2004) 

Source 

Drain 

Leonelli et al., SSDM (2009) 

Vandooren et al. 
VLSI Workshop  
(2009) 

Gate 
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Literature 
FinFET 
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Progress Toward Hetero-junctions  
Implementations 

34 

TFET PERFORMANCE SUMMARY - SEABAUGH 
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Tunnel FET devices based on nanowires 

 Possible implementation of Tunnel FETs using etched 
nanowires 

N- Epi layer 

N+ substrate 

P+ Epi layer 

N- N- 

P+ 

N+ substrate 

P+ 

TFET implementation 

N- N- 

P+ 

N+ substrate 

P+ 

etched nanowires 

TiN 

Etched NW 

 Templated and constrained growth of nanowires 

Constrained cat-based 

Constrained cat-less 
InAs NW growth on Si(111) 

Growth can be 
performed 

partially or fully 
constrained, with 

or without 
catalyst 

Etched Si nanowire 

TUNNEL FET BASED ON NANOWIRES 
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Progress Toward Hetero-junctions  
Implementations 

36 

III-V AND GRAPHENE TFETS 
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A. Seabaugh – ESSDERC 2011 
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3D 2D 1D 0D 

Curl, Kroto & 
Smalley 1985 
Nobel prize 1996 

Fullerenes Carbon 
nanotubes 

Multi-wall   1991 
Single-wall 1993 

Graphite 
 
XVI century 

Graphene 
 

2004 
Geim, Novoselov 
Nobel prize 2010 

CARBON STRUCTURES 
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FIELD-EFFECT DEVICES 

Lemme et al., IEEE Electron. Dev. Lett. 28, 4 (2007) 

“Classical” field-effect approach 

• Top and bottom gates 
• Ion/Ioff ratio ~10 at 300K 

p-Si 

SiO2 

Graphene 

300 nm 

SiO2 20 nm Drain Source 
Gate 

Cannot switch it off! 
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COMPARISON OF FREQUENCY PERFORMANCE 

39 

F. Schwierz, Proc. Int. Conf. on Solid-State and Integrated Circuit Techn., Eds. T.-A. Tang and Y.-L. Jiang ,  
pp. 1202-1205 (2010) 
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CNT INTERCONNECTS 

Current capacity: 
•  Cu  ~ 106 A/cm2 

•  CNTs ~ 109 A/cm2 
 

Thermal conductivity: 
•  Cu  ~ 400 W/m.K 
•  CNTs ~ 5000 W/m.K 

CNT exhibit enhanced electrical and thermal properties over Cu 

M1-Cu 

V1 level (CNT) 

M1-Cu 

M2-Cu 

V1-CNT 

M2-Cu 

 High-density of MW CNT obtained with Fe on Ti 
 Approaches density needed for interconnects ~1012 MWCNT or ~1013 cm-2 CNT shells 

• Outer diameter of 6.5 – 8.0 nm (with 7- 10 sheets), inner diameter ~ 5nm 

XRR 0.43 g/cm3 
 

~1012 CNTs/cm2 

 

10 µm 

36 µm 

650C* 
6.5 

6.7 

7.0 

7.9 

7.8 

7.8 

6 walls 

Carpet of densely aligned CNT 
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Nano-bio vision :Bio :: 

transistor 

Nano building stone 

cm µm nm 

x109 

BIOTECH 

NANOTECH 

NANOELECTRONICS 

NANO-BIO  VISION: BIO AND ICT MEET AT THE 
NANOSCALE 



© IMEC 2011 / CONFIDENTIAL C-COE PICE, TOKYO,   OCTOBER 4, 2011     C. CLAEYS       42 

ARTIFICIAL SYNAPSE 

ARTIFICIAL SYNAPSE = functional interface allowing 
bi-directional communication between a neuron and an 
integrated circuit = neurons-on-chip 
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A MEDICAL LAB OF ONLY 1X1 cm2 

Detection platforms for low concentrations of disease  
molecules: 
 Fast 
 Easy to use 
 Cost effective 43 C-COE PICE, TOKYO,   OCTOBER 4, 2011     C. CLAEYS       
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ORGANIC  
MICROPROCESSOR 
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1971: Int e l 4004 
First Si μProc. 
10 µm 
4 bit 
pMOS 
-15V Vdd 
2300 TOR 
108 KHz 

2011: im ec & Holst  
First plastic μProc. 
5 µm 
8 bit 
pMOS, dual Vt 
-10V Vdd 
2000 TOR 
6 Hz 
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Courtesy P.  Heremans 
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Photovoltaics: 
IMEC’s terrestial solar cells roadmap 

Single X ⇒ Multi X 

Thick(>180µm) bulk Si 

Single X ⇒ Multi X 

Thin-film c-Si <  20 µm Fully organic 
Thin-film cells for 
large-scale power  
generation Epitaxial cells 

Cells on ceramic/glass Single X ⇒ Multi X Epitaxial cells 
Cells on ceramic/glass 

Organic cells for consumer applications 

2000 2010 2020 2030 
Near-term Intermediate term Long term 

t 

Achievable direct cost module level (€/Wp) 
2.7-3.5  

300µm multi 150µm multi Thin ribbon Thin-film Organic cells 

1.3-1.5  1.1-1.3  0.5-1.0  < 0.5  

SOLAR+ Roadmap 
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ORGANIC SOLAR CELLS 
EFFICIENCIES ABOVE 5% 
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MULTI-JUNCTION SOLAR CELLS:  
STATE-OF-THE-ART (WORLDWIDE) 

Record conversion efficiencies 
obtained (32% under 1 sun, 
40.1% under concentration) 
 

Key technologies: 
 
• current matching of top and middle 
cell 
• wide-gap tunnel junction 
• exact lattice matching (1% Indium 
added in GaAs cell) 
• InGaP disordering 
• Ge junction formation 
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GaN ON Si FOR LOWER COST POWER & 
LED DEVICES 
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TDD reduction 
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GaN FOR POWER CONVERSION 
AND SOLID-STATE LIGHTING 
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CMORE 
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