

NANOELECTRONICS AS INNOVATION DRIVER FOR A GREEN SUSTAINABLE WORLD

Cor Claeys

HUMAN++++

TECHNOLOGY IN EVERY ASPECT OF OUR LIFE

4.5 BILLION CELL-PHONES

THE OWNER WITH THE OW

State of Lot of

(contrastion)

1

and an other states

- CACCO

26261

SMART PHONE EASYTO USE INNOVATIVE APPS

54 MILLION UNITS IN 2011 208 MILLION BY 2014 2011 EXPLOSION TABLET PC

A 10

imec

SMARTER MOBILITY ROAD VIEW TRANSMITTING SYSTEM

Copyright Art. Lettedey Budo

C-COE PICE, TOKYO, OCTOBER 4, 2011 C. CLAEYS

TIR

X123YH

KEEP INCREASE OF THE NUMBER OF COMPONENTS. COST PER COMPONENTS DECREASES!

Integrated Circuit Complexity

TECHNOLOGY ROADMAP: STRATEGIC AGENDA

SCALING HAMPERED BY LEAKAGE CURRENTS

TACKLING THE POWER PROBLEM

Solution → New Material e.g., High-K dielectric

TACKLING THE POWER PROBLEM

TRANSISTOR SCALING

STRESS ENGINEERING : A DRIVING FORCE

90nm	65nm	45nm	32nm	
	• SMT ^{x1}	• SMT ^{x2}	• SMT ^{x3}	
 e-SiGe + tCESL (100)/[100] + tCESL 	 e-SiGe + tCESL (100)/<100> + tCESL DUAL CESL 	 e-SiGe + tCESL e-SiGe + DUAL CESL DUAL CESL 	 e-SiGe + tCESL e-SiGe + DUAL CESL DUAL CESL 	
	AINGERING	• SPT (Stress Proximity Technique)	• SPT (Stress Proximity Technique)	
		 (Surface Engineering: (110)/<110> pMOS; (100)/<100> nMOS) 	 Surface Engineering: (110)/<110> pMOS (100)/<100> nMOS 	
0			• e-SiC	

TRANSISTOR SCALING

Ge PMOS

J. Mitard et al., IEDM 2008, p. 873

Ge PMOS – INTERFACE ENGINEERING

Ge DEVICES – SURFACE PASSIVATION

Cross-sectional TEM images of a high-k gate stack on a Ge surface passivated by different thicknesses of Si. At 12 MLs of silicon, the layer relaxes, giving rise to misfit dislocations at the interface.

HIGH-MOBILITY GE-BASED IMPLANT-FREE QUANTUM WELL DEVICES

2nd generation SiGe QW with additional eSiGe S/D booster achieved extremely <u>high performance</u> (Ion=ImA/um) combined with intrinsically <u>superb Short-</u> <u>Channel control</u> (DIBL ~ I30mV/V, Lg ~ 30nm)

CMOS WITH HIGH-MOBILITY CHANNEL MATERIALS

S. Takagi, The University of Tokyo, INC4 2008

	Si	Ge	GaAs	InP	InAs	InSb
electron mob. (cm²/Vs)	1600	3900	9200	5400	40000	77000
electron effective mass (/m ₀)	m _t : 0.19 m _l : 0. 916	m _t : 0.082 m _t : 1.467	0.067	0.082	0.023	0.014
hole mob. (cm²/Vs)	430	1900	400	200	500	850
hole effective mass (/m ₀)	m _{HH} : 0.49 m _{LH} : 0.16	m _{HH} : 0.28 m _{LH} : 0.044	m _{HH} : 0.45 m _{LH} : 0.082	т _{нн} : 0.45 т _{LH} : 0.12	т _{нн} : 0.57 т _{LH} : 0.35	m _{HH} : 0.44 m _{LH} : 0.016
band gap (eV)	1.12	0.66	1.42	1.34	0.36	0.17
permittivity	11.8	16	12	12.6	14.8	17

- Ge has lightest hole m*
 Good for pMOS
 - \Rightarrow good for pMOS

 Many III-V materials have light electron m*
 ⇒ ideal for nMOS si CMOS

Combination of high mobility III-V nMOS and (strained) Ge pMOS integrated on Si substrate for ultimate CMOS performance

Ge AS INTERMEDIATE SEMICONDUCTOR

- A wide range of materials could be grown on a Silicon wafer with Ge as an intermediate material to achieve low defect-density III-V Silicon
 - Most interesting candidates: GaAs, InGaAs, InAs,

HIGH-MOBILITY IIIV-BASED QW DEVICES

> Demonstration of:

- ✓ Common gate stack for IIIV & Ge based devices
- ✓ Selective IIIV integration, directly on Silicon substrate
- ➢ Issue left of Dit @ interface IIIV gate stack

SELECTIVE EPI GROWTH OF Ge AND III/V AFTER STI

□ Selective growth of Ge epi after STI formation on Si wafer

- Low defect densities obtained after proper annealing
- Provides flat surface that allows further scaling of transistor gate length

Good quality selective growth of thin (In)GaAs on Ge demonstrated
 No large defects or dislocations can be observed by TEM

imec

© IMEC 2011 / CONFIDENTIAL C-COE PICE, TOKYO, OCTOBER 4, 2011 C. CLAEYS

SELECTIVE GROWTH OF Ge AND III/V ON SI WAFERS

☑ Local selective growth after STI allows integration of Ge and III/V materials on Si wafers, also for FinFET's.

confined growth to grow materials with high lattice mismatch to Si, >> t_c

MULTI-GATE STRUCTURES

MATERIALS AND DEVICES

imec

EXPLORATORY CONCEPTS

Graphene FET

Tunnel FET

DEVICES WITH REDUCED POWER CONSUMPTION

- □ Improved subthreshold slope devices can have high I_{ON}/I_{OFF} ratio at low switching voltage \rightarrow reduced supply voltage and power consumption
 - For carrier transport limited by thermionic emission over a barrier: $d\psi_S/d(\log_{10}I) \approx 60 \text{ mV/decade at room temperature}$

Band gap blocks 0.5 Energy [eV] 0.5 E, tunnel current gate -1.5 -2 0 50 100 150 Distance [nm] р n **E**_c 1.5 ON 0.5 0 0 -0.5 E, Band-to-band tunneling -1.5 -2 0 50 100 150 Distance [nm]

OFF

E_c

1.5

- TunnelFET basic idea: use the band-to-band tunneling as an energy filter to overcome the 60mV/decade subthreshold slope limitation
 - ON/OFF switching determined by band-to-band tunneling at source side

CHOICE TFET MATERIAL: EFFECT OF BANDGAP

Remark: Ge TFET-curve is shifted to the left for easier comparison

COMPLEMENTARY HETERO-STRUCTURE TFETS

A. Verhulst et al., IEEE Electron Dev. Lett., 29, 1398 (2008)

TFET PERFORMANCE SUMMARY - SEABAUGH

TUNNEL FET BASED ON NANOWIRES

Possible implementation of Tunnel FETs using etched nanowires

Templated and constrained growth of na

Growth can be performed partially or fully constrained, with or without catalyst

III-VAND GRAPHENE TFETS

tunneling // to the gate oblique to the gate field

tunneling ⊥ to the gate in-line with the gate field

Tunnel transistors geometries

gate-all-around - best electrostatics

graphene nanoribbon (GNR) TFET *n* an *p* channel currents commensurate

A. Seabaugh – ESSDERC 2011

CARBON STRUCTURES

Fullerenes

Curl, Kroto & Smalley 1985 Nobel prize 1996

Carbon nanotubes

Multi-wall 1991 Single-wall 1993

Graphene

2004 Geim, Novoselov Nobel prize 2010

Graphite

XVI century

FIELD-EFFECT DEVICES

"Classical" field-effect approach

- Top and bottom gates
- Ion/loff ratio ~10 at 300K

```
Cannot switch it off!
```

Lemme et al., IEEE Electron. Dev. Lett. 28, 4 (2007)

COMPARISON OF FREQUENCY PERFORMANCE

CNT INTERCONNECTS

CNT exhibit enhanced electrical and thermal properties over Cu

- High-density of MW CNT obtained with Fe on Ti
 - Approaches density needed for interconnects ~10¹² MWCNT or ~10¹³ cm⁻² CNT shells
 - Outer diameter of 6.5 8.0 nm (with 7-10 sheets), inner diameter ~ 5nm

~ 400 W/m K

NANO-BIO VISION: BIO AND ICT MEET AT THE NANOSCALE

ARTIFICIAL SYNAPSE = functional interface allowing <u>bi-directional communication</u> between a neuron and an integrated circuit = neurons-on-chip

A MEDICAL LAB OF ONLY IXI cm²

- Fast
- Easy to use
- Cost effective

ORGANIC **MICROPROCESSOR**

C-COE PICE, TOKYO, OCTOBER 4, 2011 C. CLAEYS

mon carte o moust had reading and and and Concessions as gummer to say any statistical manager alles and the states of the st

71

T

and the state of t CALIFORNIA CALIFORNIA DA DA AL ANALAR ANALAR ANALAR ANALAR ANA and the state of the sum taxation a sumation

יוווידיועימיעיד אינופעראעע אינאיעאאאע

FIRE LARGER STREET AND STREET AND STREET

ALTER OF ST STATEMENT OF STATEMENT OF STATEMENTS THE THE PARTY OF T

8B-

PPL

<u>1971: Intel 4004</u> First Si μProc. 10 μm 4 bit pMOS -15VVdd 2300 TOR 108 KHz

imec

2011: im ec & Holst First plastic μProc. 5 μm 8 bit pMOS, dual Vt - I0V Vdd 2000 TOR 6 Hz

Courtesy P. Heremans

SOLAR+ Roadmap

ORGANIC SOLAR CELLS EFFICIENCIES ABOVE 5%

MULTI-JUNCTION SOLAR CELLS: STATE-OF-THE-ART (WORLDWIDE)

Record conversion efficiencies obtained (32% under 1 sun, 40.1% under concentration)

Key technologies:

- current matching of top and middle cell
- wide-gap tunnel junction
- exact lattice matching (1% Indium added in GaAs cell)
- InGaP disordering
- Ge junction formation

GaN ON Si FOR LOWER COST POWER & LED DEVICES

GaN growth on Si

Power HEMTs

GaN FOR POWER CONVERSION AND SOLID-STATE LIGHTING

